
Journal of Chromatography A, 660 (1994) 25-31 
Elsevier Science B.V., Amsterdam 

CHROMSYMP. 2911 

Determination of rate constants in a liquid 
chromatographic reactor by means of a fitting algorithm 

R .  T h e d e *  a n d  D .  H a b e r l a n d  

Department of Chemistry, University of Greifswald, Soldtmannstr. 23, D-17489 Greifswald (Germany) 

E .  B e l o w  

Institute of Forensic Medicine, University of Greifswald, Kuhstrasse 30, D-17489 Greifswald (Germany) 

ABSTRACT 

Based on the exponentially modified Gaussian profile, a new equation for the evaluation of product peaks of liquid 
chromatographic first-order reaction ehromatograms is given. It is shown that this equation is able to fit reaction chromatograms 
corresponding to the linear model of chromatography. 

INTRODUCTION 

If chromatographic equipment  is applied for 
the determinat ion of  rate constants, several 
methods  can be used [1]. It seems that the so- 
called inert standard method is the most wide- 
spread, in which an inert standard is added to 
the reactant,  and then the reactant is converted 
into one or more products,  which are separated 
from the reactant.  The conversion of the re- 
action can be evaluated from the ratio of the 
pulse area of the reactant and the inert standard. 
By variation of the flow-rate of  the mobile 
phase,  the duration of  the reaction can be 
varied, and from the correlation between the 
retent ion time and the conversion an apparent 
rate constant can be found. 

On the other  hand, it may be time consuming 
to look for a suitable standard. Moreover ,  the 
method is suitable only for simple first-order re- 
actions. For  complex reactions only a composite 
rate constant can be determined.  Even with a sim- 

pie first-order reaction, the area of the reactant 
pulse must be corrected,  as it is not possible to 
separate the reactant and the product  completely 
from each other.  Especially in liquid chromatog- 
raphy there may be the problem of comparable 
rate constants for the chemical reaction and the 
mass transfer, which makes the determinat ion of  
statistical moments  necessary [2,3]. 

For these reasons, we decided to develop an 
analytical function that represents the product  
curve for simple first-order reaction and for 
parallel reactions. Unfortunately,  the situation 
becomes more complicated for consecutive re- 
actions, and this aspect will be t reated in a 
subsequent paper. 

The derivations were based on the exponential- 
ly modified Gaussian ( E M G )  profile [4], because 
it is useful for many applications in chromatog- 
raphy [5] and Naish and Hartwell [6] showed its 
special advantage for liquid chromatography.  

MATHEMATICAL MODELLING 
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matographic process (dynamic partitioning be- 
tween the stationary and mobile phases) is the 
sum of differential product pulses, which are 
formed one after the other as the reactant pulse 
passes the column. 

The product concentration, which appears at 
the end of the column at time t, is the sum of 
those concentration elements dc which are leav- 
ing the column together at time t. Every concen- 
tration element dc is related to an amount 
element din, which is produced when the reac- 
tant passes the length coordinate x of the col- 
umn. The concentration elements can be 
evaluated from the amount elements by a dis- 
tribution or peak shape equation, the moments 
of which (first moment,  second and third central 
moments) in linear chromatography are related 
to the moments of the pure substances by a 
linear equation (a list of symbols is given at the 
end of the paper): 

dcp( t ,  x )  = dmp(X)*p[ lZ i (x  ) ,  t] 

dmg(x) 
= --  d x  • * p [ f 6 i ( x ) ,  t ]  d x  ( 1 )  

tz ,(x)  = 1 "  l - x ~ i R  + T "  ~£iP (2) 

In a simple first-order reaction, we obtain for an 
amount  element drop: 

dJ~p = k e -kt°(x/I)  d x  = k '  e - k ' ( t - ~ l p )  e k ' ( ~ - t )  (3) 

In a parallel reaction we find a very similar term: 

drop = k 1 e -kt°(x/I) dx  = k '  1 e -k ' ( t -~le)  e k ' (~- t )  

k = k I + k 2 (4) 

Therefore,  it will be possible to transfer the 
following results given for simple first-order 
reactions to product peaks from parallel re- 
actions. 

Introducing the EMG distribution: 
y2 

1 __~(_~2 ~ /'~ e-q-  
- - e  2 , , /  e-VZJ_ dy  

t - / x  or ¢ (5) 
Z = -  t- 

or T or 

for the peak shape equation in eqn. 1, we 
already have an EMG-based equation for the 

product curve of irreversible first-order re- 
actions: 

aT- 1 /o ' \2  / u  "r't 
cp = k' e -k ' ( t - t~lp)  v e-~[¥) e k ' ~ r / 7 - ~  ) I 

T 

.i, 2 

f z(p'lp) f g  - - -  [ =  J z ( ~ m )  ek~z e 2 _ = - - ~  dy  d z  (6) 

There remains, two problems however: first, 
there is a contradiction between eq. 2 for the 
moments of the product peak and the moments 
of the EMG pulse [4]: 

]J.,2 = or2 -t- T 2 

3 
T 

~ 2 

(7) 

It is not possible to fulfil both eqs. 2 and 7 at the 
same time. The second problem is of a numerical 
nature: it is not possible to simplify eqn. 6 as 
long as it is assumed that both or and z depend 
on the length coordinate or, which means the 
same, as long as it is assumed that or and z of the 
product and the reactant differ markedly. On the 
other hand, it is not possible to assume simply 
that they are always equal, because then it will 
not be possible to fit real reaction chromato- 
grams. 

Investigating eqn. 6, it turned out that a larger 
part of the product curve between the ~'~IR and 
the/zip values is nearly independent of or and ¢ 
as long as the or and ~" values do not differ 
dramatically. Therefore, we suggest the follow- 
ing procedure. The concentration of the product 
is evaluated first with the pure or and r of the 
reactant and second with the pure or and  ~" of the 
product. The final concentration will be found by 
a weighted average according to the equation 

cp = tmCp(rg,  OrR) + (1 -- t.)Cp(r , orp) 

t - ~lP 
tm 

/Zla - Pqe 

(8) 

Then the integral I in eqn. 6 can be simplified: 
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Fig. 1. Composition of the resulting product peak (line) from the product peak with the shape parameters of the reactant 
(squares) and the product peak with the shape parameters of the product (circles). 

I = 1 (ekvz(p,  lp ) ekoZOtm) - F [ z ( t , , R ) ]  

k~ 
- e T  {F[z( i . t tv )]  - VIZ(~R)]}) (9) 

y2 

C z e 2 
F[z ]=  / ./_® ~ / ~  dy 

The Gaussian integral function in these terms 
can easily be calculated by several polynomial 
approaches [7]. Fig. 1 displays the comparision 
of the final product peaks according to eqn. 8. 

N U M E R I C A L  E V A L U A T I O N S  

As there are nearly always reaction chromato- 
grams obtained in which both the reactant and 
the product are present, the fitting equation has 
to be a sum of the shape equation for the 
reactant and the product peak taking into ac- 
count that there can be different molar detector 
responses for both species. Therefore, we obtain 
the following fitting equation: 

y = f V ( f R C R  + Cp) 
( 1 0 )  

ca = e-k'° ~(/~a, T R ,  O ' a ,  t) 

It is obvious that it will not be very simple to fit 
this nine-parameter equation to the chromato- 
grams. Fortunately, some initial values for the 
parameters can be taken from the chromatogram 
(c f . ,  Fig. 2). 

The response factors fp and fa are calculated 
from the area ratio of the fitting equations and 
the chromatogram for selected parts of the 
chromatogram (in Fig. 2: t 2 2 -  t23 for  fp and 
t21 -- tll for fa)- The fitting itself starts then with 
the selection of the magnitude of the rate con- 
stant. Then the parameters are systematically 
varied using the sequence k, glv, O'p, Tp, /.L1R , 
O ' R , T  R .  

We used a Turbo PASCAL program for the 
implementation of this algorithm on a personal 
computer. 

In order to see if our approach meets the 
model of linear chromatography, we used the 
method of finite differences to solve the partial 
differential equations of the linear liquid chro- 
matographic reactor and fitted our equation to 
the chromatogram numerically evaluated. Fig. 3 
shows the very good agreement between the 
numerical chromatogram and our fitting equa- 
tion. The results for the moments and the rate 
constant are given in Table I. There is only one 
greater deviation concerning the values for the 
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Fig. 2. Essential points in the reaction chromatogram for the estimation of  initial values for several parameters t20 = Beginning of  
the fit; ~ --- initial value for ~lP; initial value for o-p, o-p = ( ~ ,  - t20)/2; t22 - t23 = region for the evaluation of.fp; t21 - tl0 = region 
for the evaluation of  fR; ~ = initial value for/~lr~; tH, ~rR : tH - /JR.  

third moment of the product, but this is due to 
the fairly symmetric shape of the product pulse. 

We can conclude that our equation is well 
suited for the fitting of reaction chromatograms 
which are produced by linear chromatographic 
processes. 

E X P E R I M E N T A L  A N D  RESULTS 

We used a modular liquid chromatographic 
system from GAT (Berlin, Germany), equipped 
with a 5/.~m RP-18 column and a GAT PHD 601 
UV detector. The hydrolysis of acetic anhydride 
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Fig. 3. Best  fit (points) of  eqn. 10 to a chromatogram numerically evaluated by a finite difference method. 
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TABLE I 

RESULTS OF FITTING EQN. 10 TO A NUMERICAL 
CHROMATOGRAM 

/~m lOp.2a l O ~ a  P',r lOPmr lO/~e k 

NumY 7.92 3.78 2.08 4.00 1.44 1.04 1.40 
Fit. ~ 7.92 3.91 2.15 4.02 1.42 0.08 1.42 

° N u m . = f r o m  numerical chromatogram by integration; 
Fit. = from fitting eqn. 10 to the chromatogram. 

was used for the investigation of a first-order 
reaction. With pure water as the eluent we 
obtained extremely skewed peaks, which obvi- 
ously will not be in accordance with the assump- 
tions of linear chromatography. Therefore, we 
added 20% of methanol to reduce the peak 
tailing. We used amounts of 0.3 /zl of acetic 
anhydride and varied the flow-rates. 

As can be seen from Figs. 4-6, the reactant is 
contaminated by impurities, which especially 
interfere with the product pulse. It is not surpris- 
ing that one of them is obviously acetic acid, as 
the reaction with the eluent will begin within the 
sample loop. Because of this distortion of the 
product peak flank we could not fit the first 
moment and the EMG peak shape parameters of 
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the product, but took the values from the chro- 
matograms assuming that the acetic acid pulse is 
nearly a Gaussian. 

The essential results of the fittings are summa- 
rized in Table II. It can be seen that the 
apparent rate constants are in agreement over a 
relatively wide range of conversion. In addition 
to the results of the numerical evulations, this 
shows that the application of an EMG-based 
product profile leads to reasonable results even 
in difficult cases. 

SYMBOLS 

c concentration 
fp molar detector response of the product 
fR ratio of molar dectector response of reactant 

and product 
k apparent rate constant 
k '  k t o / ( f t l R  - -  fLip) 
l column length 
m concentration-time area of the peak 
P product 
R reactant 
t time 
t o dead time 
x length coordinate 

peak shape function 
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Fig. 4. Hydrolysis of acetic anhydride at a flow-rate of 0.3 ml/min. Points: best fit according to eqn. 10. 
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Fig. 5. Hydrolysis of acetic anhydride at a flow-rate of 0.2 ml/min. Points: best fit according to eqn. 10. 
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Fig. 6. Hydrolysis of acetic anhydride at a flow-rate of 0.1 ml/min. Points: best fit according to eqn. 10. 

TABLE II 

RESULTS OF FITTING EQN. 10 TO CHROMATO- 
GRAMS FOR THE HYDROYLSIS OF ACETIC ANHY- 
DRIDE 

Flow-rate (ml/min) Conversion (%) k (fit)(min -l)  

0.3 ca. 35 0.072 
0.2 ca. 50 0.071 
0.1 ca. 70 0.070 

/.t i m o m e n t  o f  t h e  p e a k  u n d e r  n o r m a l  c h r o m a t o -  

g r a p h i c  c o n d i t i o n s :  
i = 1: first  a b s o l u t e  m o m e n t  

i = 2: s e c o n d  c e n t r a l  m o m e n t  

i = 3: t h i rd  c e n t r a l  m o m e n t  

tr s t a n d a r d  d e v i a t i o n  p a r a m e t e r  o f  t h e  E M G  

f u n c t i o n  
~- s k e w  p a r a m e t e r  o f  t h e  E M G  f u n c t i o n  



R. Thede et al. / J. Chromatogr. A 660 (1994) 25-31 31 

REFERENCES 

1 C.Y. Jeng and S.H. Langer, J. Chromatogr., 589 (1992) 1. 
2 R. Thede, H. Pscheidl and D. Haberland, Z. Phys. Chem., 

266 (1985) 1089. 
3 C.Y. Jeng and S.H. Langer, Ind. Eng. Chem. Res., 30 

(1991) 1489. 
4 J.A. J6nsson, Chromatographic Theory and Basic Princi- 

ples, Marcel Dekker, New York, 1987. 

5 M.S. Jeansonne and J.P. Foley, Y. Chromatogr. Sci., 29 
(1991) 258. 

6 P.J. Naish and S. Hartwell, Chromatographia, 26 (1988) 
285. 

7 M. Abramovitz and A. Stegun (Editors), Handbook of 
Mathematical Functions, US Government Printing Office, 
Washington, DC, 1966. 


